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Motivation- 
The main motive behind this project is to analyse stochastic gradient descent 
for unconstrained optimisation and analyse ways to speed up the descent 
method by introducing knowledge about the function topology. 
 
 
Introduction - 

Adam Optimiser is one of the fastest iterative optimisation algorithms, used in many 
areas, especially machine learning. Over the past 50 years, there has been extensive 
research in this field, and numerous algorithms have been proposed.  

 
Evolution of Iterative Optimisation Algorithms till Adam Optimiser - 

1. Gradient Descent 
It is a first order iterative method for finding the minimum of a function. It is 
based on the fact that the function value decreases in the opposite direction of the 
gradient at a particular point, if it is not a local minimizer. 

UPDATE RULE: 
 

 

Challenges and Drawbacks – 
a. Choosing a proper step size- if too small, slow convergence; if too 

large, may cause function to fluctuate around minimum or even 
diverge. 

b. Same step size for update of all components of X and also alpha has to be 
tuned for each iteration. 
 

 
2. Newton’s Method 

It is a second order iterative method for finding the minimum of a function. In 
this method of optimization, the objective function is approximated by a 
quadratic function around ​X​n​, and then a step is taken towards the minimum of 
that quadratic function. 

 
UPDATE RULE: 

       
 

 
 
 
 

https://www.codecogs.com/eqnedit.php?latex=X_%7Bn%2B1%7D%20%3D%20X_n%20-%20%5Calpha(%5Cnabla%20f(X_n))%0
https://www.codecogs.com/eqnedit.php?latex=X_%7Bn%2B1%7D%20%3D%20X_n%20-%20%5Calpha%20(H(f(x))%5E%7B-1%7D%5Cnabla%20f(X_n)%0


Challenges and Drawbacks - 
a. Computation of inverse of Hessian is expensive as dimensional 

space increases . 
b. All the drawbacks of gradient descent method hold here as well. 

 
Adding Momentum ​(1986) 

Gradient descent has trouble navigating ravines, i.e. areas where surface curves 
more steeply in one dimension than in the other. In these scenarios, GD oscillates 
across the slopes of the ravine while only making hesitant progress along the 
bottom towards the local optimum. 
Adding momentum accelerates GD in the relevant direction and dampens 
oscillation. It is done by adding a fraction of the update vector of the past time 
step to the current update vector. 

 
UPDATE RULE: 

 

The momentum term increases for dimensions whose gradients point in the 
same directions and reduces updates for dimensions whose gradients change 
directions. As a result, we gain faster convergence and reduced oscillation. 

 

Gradient Descent without momentum Gradient Descent with momentum 
 

Challenges and Drawbacks- 
It does not know when to slow down, and can overshoot the minimum. 

 
 

3. Nesterov accelerated gradient 
Nesterov momentum has a kind of prescience. It has a notion of where it is going 
and knows to slow down before the hill slopes up again. 
First, it makes a big jump in the direction of the previous accumulated gradient. 
Then it measures the gradient where it ends up, and makes a correction. 
This corrective update prevents ​X​n​ ​from going too fast and overshooting the 

minimum. 

 



 ​UPDATE RULE: 

 

Challenges and Drawbacks - 
a. Up until now, we have adapted the direction to the slope of the objective 

function and sped up the descent. However, we would also like to adapt 
our step size to each individual component ​X​i​. 

 

4. Adagrad ​(2011) 
It adapts step size rate to the components, performing larger updates for 
components in whose direction, the gradient is less steep, and smaller updates 
for those components in whose direction, the gradient is steeper. This prevents 
unnecessary oscillations in the steeper direction, and moves faster in the less 
steep direction. 

 
UPDATE RULE: 
 

Implemented Code 

a. Adagrad’s main weakness is its accumulation of the squared gradients in 
the denominator. Since every added term is positive, the accumulated sum 
keeps growing during training. This in turn causes the step size to shrink 
and eventually become infinitesimally small, at which point the algorithm 
is no longer able to acquire additional knowledge. 

 
5. RMSprop ​(2012) 

Restricts window of accumulated past gradients to some fixed size, by using exponential 
averaging. 

 
  

UPDATE RULE: 

 

 

 
 

Implemented code 
 

 

https://github.com/shashank98giri/Optimisation-Project/blob/master/Optimisation_Algorihtms/adagrad.m
https://github.com/shashank98giri/Optimisation-Project/blob/master/Optimisation_Algorihtms/rmsprop.m


6. ​Adam ​(2014) 
This algorithm also computes adaptive step sizes for each ​X​i​. In addition to dividing the 
step size by the decaying average of past square gradients like RMSprop, Adam also 
replaces the simple gradient term by an exponentially decaying average of past gradients, 
thus incorporating momentum. 

 
m​t​  =  β​1​m​t−1​ + (1 − β​1​)g​t v​t​ = β​2​v​t−1​ + (1 − β​2​)g​2 

 
As ​m​t ​and ​v​t ​are initialized to 0 vector, their subsequent values are biased towards 0,                
especially during the initial time steps, and especially when the decay rates are             
small. (​β​1​ ​and ​β​2​ ​are close to 1). Performing bias correction - 

 
UPDATE RULE: 

 

Implemented Code 
 

An additional advantage of this technique is that we do not have to manually 
tune value of alpha. 
An appropriate value is chosen at first and then the value of alpha is kept 
constant.  
 
Testing - 

 
We test Adagrad, RMSprop and Adam algorithms on various test functions like – 

1. Sphere Function –  

  
 

 

2. Rosenbrock Function –
 

  

  

 

 

3. Beale Function – 

 
 

 

4. Matyas Function – 

 
  
 

https://github.com/shashank98giri/Optimisation-Project/blob/master/Optimisation_Algorihtms/adam.m
https://www.codecogs.com/eqnedit.php?latex=f(x_1%2Cx_2)%20%3D%20x_1%5E2%20%2B%20x_2%5E2%0
https://www.codecogs.com/eqnedit.php?latex=f(x_1%2Cx_2)%3D100(x_2-x_1%5E2)%5E2%2B(x_1-1)%5E2%0
https://www.codecogs.com/eqnedit.php?latex=f(x_1%2Cx_2)%3D%20(1.5%20-x_1%20-%20x_2)%5E2%2B%20(2.25%20-%20x_1%20%2B%20x_1x_2%5E2)%5E2%2B(2.625%20-%20x_1%20%2B%20x_1x_2%5E3)%5E2%0
https://www.codecogs.com/eqnedit.php?latex=f(x_1%2Cx_2)%3D0.26(x_1%2Bx_2)%5E2%20-%200.48x_1x_2%0


 

                  
 
 
 
 
 
 



 
 

 
Adamax- 
 
The  norm was used in Adam technique.  
Let’s see what will happen if we generalize it to . 
 
For higher values of p the algorithm becomes numerically unstable . However when  

 a surprisingly stable algorithm emerges. 
 

 
 

883 
 

This update remain same as that of Adam where  
 

Implemented Code 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

https://www.codecogs.com/eqnedit.php?latex=L%5E2%0
https://www.codecogs.com/eqnedit.php?latex=L%5Ep%0
https://www.codecogs.com/eqnedit.php?latex=p%20-%3E%20%5Cinfty%0
https://www.codecogs.com/eqnedit.php?latex=v_t%3Du_t%0
https://github.com/shashank98giri/Optimisation-Project/blob/master/Optimisation_Algorihtms/adamax.m


 
 
 

End Results- 
 

The algorithms were analysed  on the functions used above and the performance was 
compared on the three techniques viz. Adagrad , RMSprop, Adam. 
 

Performance ( in terms of number of iterations required ) : ​Adagrad ​<​ RMSprop ​<​ Adam 
 
 

Applications- 
 

Stochastic gradient descent is the widely used technique for unconstrained optimisation, 
and by introducing momentum and acceleration we are also taking into consideration the 
function topology. 
 

Unconstrained Optimisation is used in minimizing the cost function in supervised learning 
techniques. So by using these techniques we can reduce the number of iterations 
required for reaching the minimizer. 
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