

Indian Institute of Technology, Indore

Adam Optimiser
Project Report (CS 357)

Department of Computer Science and Engineering

Submitted by –

Shashank Giri -160001054 Ashutosh Bang -160001011

 Under the Guidance of ​Dr. Kapil Ahuja

Motivation-
The main motive behind this project is to analyse stochastic gradient descent
for unconstrained optimisation and analyse ways to speed up the descent
method by introducing knowledge about the function topology.

Introduction -

Adam Optimiser is one of the fastest iterative optimisation algorithms, used in many
areas, especially machine learning. Over the past 50 years, there has been extensive
research in this field, and numerous algorithms have been proposed.

Evolution of Iterative Optimisation Algorithms till Adam Optimiser -

1. Gradient Descent
It is a first order iterative method for finding the minimum of a function. It is
based on the fact that the function value decreases in the opposite direction of the
gradient at a particular point, if it is not a local minimizer.

UPDATE RULE:

Challenges and Drawbacks –
a. Choosing a proper step size- if too small, slow convergence; if too

large, may cause function to fluctuate around minimum or even
diverge.

b. Same step size for update of all components of X and also alpha has to be
tuned for each iteration.

2. Newton’s Method

It is a second order iterative method for finding the minimum of a function. In
this method of optimization, the objective function is approximated by a
quadratic function around ​X​n​, and then a step is taken towards the minimum of
that quadratic function.

UPDATE RULE:

https://www.codecogs.com/eqnedit.php?latex=X_%7Bn%2B1%7D%20%3D%20X_n%20-%20%5Calpha(%5Cnabla%20f(X_n))%0
https://www.codecogs.com/eqnedit.php?latex=X_%7Bn%2B1%7D%20%3D%20X_n%20-%20%5Calpha%20(H(f(x))%5E%7B-1%7D%5Cnabla%20f(X_n)%0

Challenges and Drawbacks -
a. Computation of inverse of Hessian is expensive as dimensional

space increases .
b. All the drawbacks of gradient descent method hold here as well.

Adding Momentum ​(1986)

Gradient descent has trouble navigating ravines, i.e. areas where surface curves
more steeply in one dimension than in the other. In these scenarios, GD oscillates
across the slopes of the ravine while only making hesitant progress along the
bottom towards the local optimum.
Adding momentum accelerates GD in the relevant direction and dampens
oscillation. It is done by adding a fraction of the update vector of the past time
step to the current update vector.

UPDATE RULE:

The momentum term increases for dimensions whose gradients point in the
same directions and reduces updates for dimensions whose gradients change
directions. As a result, we gain faster convergence and reduced oscillation.

Gradient Descent without momentum Gradient Descent with momentum

Challenges and Drawbacks-
It does not know when to slow down, and can overshoot the minimum.

3. Nesterov accelerated gradient
Nesterov momentum has a kind of prescience. It has a notion of where it is going
and knows to slow down before the hill slopes up again.
First, it makes a big jump in the direction of the previous accumulated gradient.
Then it measures the gradient where it ends up, and makes a correction.
This corrective update prevents ​X​n​ ​from going too fast and overshooting the

minimum.

 ​UPDATE RULE:

Challenges and Drawbacks -
a. Up until now, we have adapted the direction to the slope of the objective

function and sped up the descent. However, we would also like to adapt
our step size to each individual component ​X​i​.

4. Adagrad ​(2011)
It adapts step size rate to the components, performing larger updates for
components in whose direction, the gradient is less steep, and smaller updates
for those components in whose direction, the gradient is steeper. This prevents
unnecessary oscillations in the steeper direction, and moves faster in the less
steep direction.

UPDATE RULE:

Implemented Code

a. Adagrad’s main weakness is its accumulation of the squared gradients in
the denominator. Since every added term is positive, the accumulated sum
keeps growing during training. This in turn causes the step size to shrink
and eventually become infinitesimally small, at which point the algorithm
is no longer able to acquire additional knowledge.

5. RMSprop ​(2012)

Restricts window of accumulated past gradients to some fixed size, by using exponential
averaging.

UPDATE RULE:

Implemented code

https://github.com/shashank98giri/Optimisation-Project/blob/master/Optimisation_Algorihtms/adagrad.m
https://github.com/shashank98giri/Optimisation-Project/blob/master/Optimisation_Algorihtms/rmsprop.m

6. ​Adam ​(2014)
This algorithm also computes adaptive step sizes for each ​X​i​. In addition to dividing the
step size by the decaying average of past square gradients like RMSprop, Adam also
replaces the simple gradient term by an exponentially decaying average of past gradients,
thus incorporating momentum.

m​t​ = β​1​m​t−1​ + (1 − β​1​)g​t v​t​ = β​2​v​t−1​ + (1 − β​2​)g​2

As ​m​t ​and ​v​t ​are initialized to 0 vector, their subsequent values are biased towards 0,
especially during the initial time steps, and especially when the decay rates are
small. (​β​1​ ​and ​β​2​ ​are close to 1). Performing bias correction -

UPDATE RULE:

Implemented Code

An additional advantage of this technique is that we do not have to manually
tune value of alpha.
An appropriate value is chosen at first and then the value of alpha is kept
constant.

Testing -

We test Adagrad, RMSprop and Adam algorithms on various test functions like –

1. Sphere Function –

2. Rosenbrock Function –

3. Beale Function –

4. Matyas Function –

https://github.com/shashank98giri/Optimisation-Project/blob/master/Optimisation_Algorihtms/adam.m
https://www.codecogs.com/eqnedit.php?latex=f(x_1%2Cx_2)%20%3D%20x_1%5E2%20%2B%20x_2%5E2%0
https://www.codecogs.com/eqnedit.php?latex=f(x_1%2Cx_2)%3D100(x_2-x_1%5E2)%5E2%2B(x_1-1)%5E2%0
https://www.codecogs.com/eqnedit.php?latex=f(x_1%2Cx_2)%3D%20(1.5%20-x_1%20-%20x_2)%5E2%2B%20(2.25%20-%20x_1%20%2B%20x_1x_2%5E2)%5E2%2B(2.625%20-%20x_1%20%2B%20x_1x_2%5E3)%5E2%0
https://www.codecogs.com/eqnedit.php?latex=f(x_1%2Cx_2)%3D0.26(x_1%2Bx_2)%5E2%20-%200.48x_1x_2%0

Adamax-

The norm was used in Adam technique.
Let’s see what will happen if we generalize it to .

For higher values of p the algorithm becomes numerically unstable . However when

 a surprisingly stable algorithm emerges.

883

This update remain same as that of Adam where

Implemented Code

https://www.codecogs.com/eqnedit.php?latex=L%5E2%0
https://www.codecogs.com/eqnedit.php?latex=L%5Ep%0
https://www.codecogs.com/eqnedit.php?latex=p%20-%3E%20%5Cinfty%0
https://www.codecogs.com/eqnedit.php?latex=v_t%3Du_t%0
https://github.com/shashank98giri/Optimisation-Project/blob/master/Optimisation_Algorihtms/adamax.m

End Results-

The algorithms were analysed on the functions used above and the performance was
compared on the three techniques viz. Adagrad , RMSprop, Adam.

Performance (in terms of number of iterations required) : ​Adagrad ​<​ RMSprop ​<​ Adam

Applications-

Stochastic gradient descent is the widely used technique for unconstrained optimisation,
and by introducing momentum and acceleration we are also taking into consideration the
function topology.

Unconstrained Optimisation is used in minimizing the cost function in supervised learning
techniques. So by using these techniques we can reduce the number of iterations
required for reaching the minimizer.

References –

 1. Adam: A Method for Stochastic Optimisation: ​Link
 2. An overview of gradient descent optimization algorithms :​Link
 3. Coursera
 a. Lecture 29, Neural Networks for Machine Learning, By Geoffrey Hinton:​Link

 4. https://math.stackexchange.comhttps://goo.gl/hsMaVQ
 5. Wikipedia
 6. YouTube
 a. Andrew Ng’s deeplearning.ai playlist –https://goo.gl/NZA4wJ
 b. University of Oxford Lecture –https://goo.gl/zs2f7a
 c. Siraj Raval – Evolution of Gradient Descent -https://goo.gl/TJSEiA

8536

998 2786

42

https://a0rxiv.org/abs/1412.698
http://https//arxiv.org/abs/1609.04747
https://goo.gl/CjSkLj

