
Indian Institute of Technology

Indore

Data Compression

Project Report
Department of Computer Science and Engineering

Submitted by –

Ashutosh Bang (160001011)

 Shashank Giri (160001054)

Under the Guidance of Dr. Kapil Ahuja

Index

1. Introduction

a. Objectives

b. Motivation

2. Algorithm Analysis

a. HUFFMAN

i. Pseudo code

ii. Complexity analysis

3. Optimizations

a. Pseudo code

b. Complexity analysis

4. Implementations and Results

a. Naive implementation

b. Efficient implementation

5. Future work

6. References

Introduction
Data compression involves encoding the given information and

representing them using fewer bits than the original representation. A

simple characterization of data compression is that it involves

transforming a string of characters in some representation (such as

ASCII) into a new string (of bits, for example) which contains the same

information but whose length is as small as possible. It is useful because

it reduces the resources required to store and transmit data. As a trade-

off for cheaper and faster transmission of data, computational resources

are consumed in the compression and the decompression process.

Data compression paradigm involves trade-off among many factors, like

Compression speed, Degree of compression, Decompression speed, and

the computational resources required for compressing and

decompressing the data.

Compression can be of 2 kinds, lossy or lossless. Lossless

compression reduces bits by identifying and eliminating redundancy in

the given file. No information is lost in lossless compression. Lossy

compression, on the other hand, reduces bits by removing unnecessary

or less important information.

In this project we have focussed on Text Compression ,which is a

lossless data compression,as one would never prefer to compress a text

on the expense of modifying the original text.

https://en.wikipedia.org/wiki/Information
https://en.wikipedia.org/wiki/Bit
https://en.wikipedia.org/wiki/Lossy_compression
https://en.wikipedia.org/wiki/Lossless_compression
https://en.wikipedia.org/wiki/Lossless_compression
https://en.wikipedia.org/wiki/Lossless_compression
https://en.wikipedia.org/wiki/Redundancy_(information_theory)

Objectives –

1. To study and analyze the HUFFMAN data compression

algorithms.

2. Compression and decompression of a text file using HUFFMAN

algorithm.

3. Attempt to improve the compression speed in the HUFFMAN

algorithm, and discussing future aspects.

Motivation –

Data compression finds its applications everywhere. It is widely used

in backup utilities, spreadsheet applications, and database

management systems. It also eases data transfer and storage.

 Lossless data compression finds its use mostly in the text

compression . There are major three lossless data compression LZW ,

LZSS, and HUFFMAN CODING. HUFFMAN CODING is the latest

one among these and mostly used.

Thus we tried to implement this algorithm in O(n log n) rather than

naive O(n
2
) .

Basic Idea Behind The Huffman Coding

Here we are originally scanning the original file and updating frequency

array which stores frequency corresponding to each input character.

After the whole input text file is scanned we are using this frequency

array to build something called as HUFFMAN tree where each leaf node

stores one of the characters present in the input file. The edges of the

tree have a label namely ‘0’ and ‘1’ . Each input character is encoded

with the labels of the paths used to reach form the root to the leaf

containing these character. Here the most frequent letter is placed closest

to the root. So the code given to this character is as small as possible.

http://www.webopedia.com/TERM/B/backup.html
http://www.webopedia.com/TERM/U/utility.html
http://www.webopedia.com/TERM/S/spreadsheet.html
http://www.webopedia.com/TERM/D/database_management_system_DBMS.html
http://www.webopedia.com/TERM/D/database_management_system_DBMS.html

Here one point should be also taken care of that no two characters

should have common prefix of codes otherwise it would be impossible

to guess while decompressing that which character to place in the

decompressed file.

Algorithm Analysis
Algorithm name: HUFFMAN

Pseudocode:(Naive)

Compression:

Algorithm Huffman(C)

1: n := |C|;

2: Q := C;

3: for i := 1 to n − 1 do

4: allocate a new node z

5: z.lef t := x := Extract-Min(Q);{Searching linearly}

6: z.right := y := Extract-Min(Q);{Searching linearly}

7: z.freq := x.freq + y.freq;

8: Insert(Q, z);

9: end for

10: return Extract-Min(Q); {return the root of the tree}

Decompression:

Tree Building using tries.

--
void build_tree(char alpha,string bit_rep){

 struct node *temp=root;

 for(unsigned i=0;i<bit_rep.size();i++){

 if(bit_rep[i]=='0'){

 if(temp->left==NULL)

 temp->left=new node('#');

 temp=temp->left;

 }

 else {

 if(temp->right==NULL)

 temp->right=new node('#');

 temp=temp->right;

 }

 }

 temp->alpha=alpha;

}

--

After building the tree we are just reading the decoded.bin file bit

by bit and while reading the bits we are also scanning the

HUFFMAN Tree and as we reach the leaf we print the character

present in the leaf to the output decoded file.

Complexity Analysis:

A simple implementation on the above algorithm takes O(n
2
) time for

compression and O(n log n) time for decompression.

Justification –

1) In the compression algorithm, when building the huffman tree we

are scanning the min heap vector twice to find the minimum two

elements present and then removing these two and inserting a node

having weight equals sum of these two minimum elements.

This will take O(n
2
) time where n is the number of elements

present in the min heap initially.

2) In the decompression algorithm,we are using trie data structure

to build the Huffman tree .We are scanning the frequency file and

then using tries to make the Huffman coding tree for decoding .

Then we are reading the decoded file and using the tree to obtain

the original character for the decoded character. Trie takes O(

nlogn) time for building the tree where n is the number of bits

written in the frequency file.

Factors affecting speed and

compression ratio

HUFFMAN algorithm

The speed of compression as well as the size of compressed file depends

a lot on input file and the frequency table built up, stored and the way it

is accessed. As the number of keys in the frequency table increases, a

good idea would be to use tries to speed up access and storage. At the

same time, when the number of keys increase decompression takes more

time to access the values.

Note: One of the issues faced in compression and decompression when

the file size is very large is that of the memory constraints (RAM) of the

machine so many a times the file is loaded in chunks in the main

memory and hence compressing and decompressing takes more time.

Optimisations

The naïve implementation of the HUFFMAN algorithm takes O(n
2
) time

to compress a given text file, as discussed above. However, it can be

optimized and can be done in O(n log n) time, using priority queue data

structure.

Every node of the trie will be a structure containing 3 fields –

 char symbol

node* left

node* right

Pseudocode –(Efficient)

Algorithm Huffman(C)

1: n := |C|;

2: Q := C;

3: for i := 1 to n − 1 do

4: allocate a new node z

5: z.lef t := x := Extract-Min(Q);{Using MINHEAP}

6: z.right := y := Extract-Min(Q);{Using MINHEAP}

7: z.freq := x.freq + y.freq;

8: Insert(Q, z);

9: end for

10: return Extract-Min(Q); {return the root of the tree}

Real C++ code

--

void build_tree(){

priority_queue<struct node*,vector<struct node*>,compare> priority; for(int

i=0;i<MAX_NUM;i++){

if(frequency[i]>0){

 priority.push(new node((char)i,frequency[i]));

 }}

 while(priority.size()!=1){

struct node *node1,*node2;

 node1=priority.top(); priority.pop();

 node2=priority.top(); priority.pop();

 struct node *new_node=new node('#',node1->weight+node2-

>weight);

 new_node->left=node1;new_node->right=node2;

 priority.push(new_node);

 }}

Complexity Analysis –

Compression-

We now first scan the uncompressed file and updates the frequency of

each character present in the original file. Which takes O(number of

bytes present in the input file).

The above implementation takes O(n logn) time to build the priority

queue of the frequency of each character present in the original file .

Once the priority queue is built we are just popping two least frequent

characters and pushing a node with weight equal the sum of weights of

these two nodes. After this we are building the Huffman tree depending

on the most frequent character present at the nearest to the root and as

the frequency of the characters decreases the depth of leaves

corresponding to that character increases.

Decompression-

Decompression is same as the decompression described in the

naive approach using trie data structure we build the Huffman

tree and then read the decoded file bit by bit and traverse the

Huffman tree correspondingly and as a leaf is encountered we

flush the character present at that leaf to the decoded file. The

trie take O(n log n) time to build and after that O(number of

bytes writtten in the decoded file) additional time is taken to

read the decoded file and then writing the decompressed file.

-Tree building using the tries code is provided in the naive section.

- writing to the decompressed file

Code(C++)

For writing to the decompressed file after building the Huffman

tree in decode process.

void read_decoded_file(string input,string output){

 FILE *fr=fopen(input.c_str(),"rb");

 FILE *fout=fopen(output.c_str(),"w");

 char c;struct node *temp=root;

 while((c=fgetc(fr))!=EOF){

 for(int i=6;i>=0;i--){

 int x=((c>>i)&1);

 if(x){

 temp=temp->right;

 if(temp->alpha!='#'){

 fprintf(fout,"%c",temp->alpha);

 temp=root;

 }

 }else{temp=temp->left;

 if(temp->alpha!='#'){

 fprintf(fout,"%c",temp->alpha);

 temp=root;

 }}}}}

Implementation and Results

The naive HUFFMAN algorithm was implemented in C++, and the

efficient HUFFMAN algorithm was also implemented in C++. Text files

with varying sizes were compressed using the algorithm.

Data compression ratio = Uncompressed File / Compressed File

The results of the naive algorithm were as follows-

Name of

file

Original

Size

Time taken

to compress

Compressed

file size

Compression

Ratio

Time taken to

decompress

small.txt 15.3 KB 0.019489

seconds

9.6 KB 1.59 0.000922

seconds

medium.txt 95.1 KB 0.049676

seconds

58.0 KB 1.637 0.005016

seconds

large.txt 166.2

KB

0.062429

seconds

104.2 KB 1.593 0.010246

seconds

The results of the efficient algorithm were as follows-

Name of

file

Original

Size

Time taken

to compress

Compressed

file size

Compression

Ratio

Time taken to

decompress

small.txt 15.3 KB 0.003655

seconds

9.6KB 1.59 0.000922

seconds

medium.txt 95.1 KB 0.019118

seconds

58 KB 1.637 0.005016

seconds

large.txt 166.2

KB

0.034337

seconds

104.2 KB 1.593 0.010246

seconds

As a result, we can see a significant improvement in compression times,

by using an efficient implementation of the HUFFMAN algorithm.

Future Work
HUFFMAN can be further improved by using various special

techniques.

ADAPTIVE HUFFMAN is a modern data compression algorithm used

in live video buffering. The benefit is that in this algorithm, the source

can be encoded in real time.

DEFLATE is a modern data compression algorithm, used in the .zip file

format. It improves Huffman by introducing LZSS codes. It is also based

on the standard bit manipulation to denote the encoded and not coded

streams.

Compression is achieved through two steps:

1) The matching and replacement of duplicate strings with pointers.

2) Replacing symbols with new, weighted symbols based on

frequency of use.

Machine learning can also help in compressing data. A system that

predicts the posterior probabilities of a sequence given its entire history

can be used for optimal data compression (by using arithmetic coding on

the output distribution) while an optimal compressor can be used for

prediction (by finding the symbol that compresses best, given the

previous history).

In arithmetic coding, a string of characters such as the words "hello

there" is represented using a fixed number of bits per character, as in

the ASCII code. When a string is converted to arithmetic encoding,

frequently used characters will be stored with fewer bits and not-so-

frequently occurring characters will be stored with more bits, resulting in

fewer bits used in total.

Data compression is an open area of research.

After the deflate algorithm there have been many new discoveries - the

most recent one is GOOGLE GUETZLI. The GOOGLE GUETZLI is a

https://en.wikipedia.org/wiki/Arithmetic_coding

JPEG encoder that aims for excellent compression density at high visual

quality.

For Complete working code written by us please refer my github

repository-

https://github.com/shashank98giri/ALgo_project

References –

1-https://github.com/gyaikhom/huffman

2- IEEE journal on a lossless data compression

http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=1715326

https://github.com/shashank98giri/ALgo_project

